
i

GAA Game Management, Referee Wear & Live Scores

HIGHER DIPLOMA IN SCIENCE

IN COMPUTER SCIENCE (NFQ – LEVEL 8)

2019-2021

INTERIM REPORT

Name:

Student Number: Sarah Barron

Supervisor: Caroline Cahill

i

Abstract

GAA game management, Referee android wear application and live scores application. The

live scores and team sheets will be displayed on the homepage of a web application. The

second web application for GAA game management will allow central, provincial and county

secretaries create games, assign referees to a game, view team sheets and match reports

from games. Club secretaries and team officials will be able to view their teams, view

upcoming games and add team sheets for upcoming games. Referees will be able to view

their upcoming games and add match reports to a game they have refereed. The web

application will be created with a headless Svelte frontend connected directly to Firebase

authentication, database, functions and hosting.

The Referee android wear application will allow a referee to keep a record of time with a stop

watch, scores, cards, substitutes and injuries during a game, they will be able to record extra

information required for the match report and be able to view team sheets. This will be

created in android studio using the Kotlin programming language.

This project is a high-level project which would require a lot of further work to move the

project from prototype to production. It would require further security and testing. GDPR

requirements would have to be met due to the volume of personal information that would be

stored in relation to members. I would like to expand the web application with full

management system that would allow a CRUD (Create, Read, Update, Delete) system for

clubs, teams, members, official roles, players, registration, fundraising, competitions,

tournaments, statistics, recording of courses, garda vetting etc. I would extend the live

scores application, the management application and referees android wear application to all

have their own mobile applications, this would allow fans to view live scores, team officials to

submit team sheets and would give the referee the choice to use a mobile or watch during a

game. I will be storing GPS co-ordinates for venues so I would like to include google maps

and directions for each game venue. I would also like to link the live results to social media

platforms and extend the functionality to LGFA and Camogie or adapt the project to other

sports.

Keywords: Android, Kotlin, JavaScript, Svelte, Firebase Authentication, Firestore, Firebase

Functions

ii

Declaration of authenticity

Higher Diploma in Computer Science 2019-2021

Name of Student: Sarah Barron

Module: Project

Date: June 2021

Assignment: Final Report

I declare that the work that follows is my own, and that any quotations from any sources

(e.g., books, journals, the internet) are clearly identified as such by the use of ‘single

quotation marks’, for shorter excerpt and identified italics for longer quotations. All quotations

and paraphrases are accompanied by (date, author) in the text and a fuller citation is the

bibliography. I have not submitted the work represented in this report in any other course of

study leading to an academic award.

Signed: _________________________________

iii

Statement of Copyright

The author and Waterford Institute of Technology retain copyright of this project. Ideas

contained in this project remain the intellectual property of the author except where explicitly

referenced otherwise. All rights reserved. The use of any part of this document reproduced,

transmitted in any form or by any means, electronic, mechanical, photocopying, recording or

otherwise stored in a retrieval system without the prior written consent of the author and

Waterford Institute of Technology is not permitted.

iv

Table of Contents

Abstract ... i

Declaration of authenticity ... ii

Statement of Copyright ... iii

Table Of Figures .. vi

1. Introduction .. 1

1.1 Background of the problem ... 1

1.2 Description of the project aims .. 1

2. Tools and technologies ... 2

2.1 Hardware... 2

2.2 Software .. 2

3. System Analysis and Design.. 3

3.1 User stories... 3

3.2 Use Cases .. 5

3.2.1 Referee Android Watch ... 5

3.2.2 Secretary ... 6

3.2.3 Team Official ... 6

3.2.4 Referee – Web Application ... 7

3.2.5 GAA Fan .. 7

3.3 Database Design ... 8

3.3.1 Conceptual Database Design ... 8

3.3.2 Entity Relationship Diagram ... 17

3.3.3 Database Model ... 18

3.3.4 Document Oriented Modelling .. 20

3.4 Functional Requirements ... 21

3.5 Non-functional requirements .. 22

3.6 User interface design ... 23

3.6.1 GAA Fan Web Application .. 23

3.6.2 GAA Game Management .. 24

4. Methodology ... 39

4.1 Methodology selection .. 39

4.2 Process outline... 39

4.3 Project Schedule .. 40

v

5. Implementation ... 41

6. Project Evaluation .. 42

6.1 What were the Outcomes of the project ... 42

6.1.1 Referee Android Wear Application .. 42

6.1.2 Live Scores Web Application .. 43

6.1.3 Game Management Web Application ... 43

6.2 Were the Objectives I set out for the project met ... 43

6.2.1 Referee Android Wear Application .. 43

6.2.2 Live Score Web Application .. 43

6.2.3 Game Management Web Application ... 43

6.3 Problems that occurred and how I solved them .. 44

6.3.1 Using Node for the web application. .. 44

6.3.2 Converting a Firestore Document into a local data class model 44

6.3.3 Fetching data from Firestore .. 45

6.3.4 Firebase Cloud Firestore Index .. 45

6.3.5 Running a Stopwatch for a long period of time without killing the process when

changing between fragments. .. 46

6.3.6 Firebase Functions running slow ... 48

6.3.7 Svelte Stores Persistence ... 49

7. Reflection on Learning .. 50

7.1 Android Wear Development ... 50

7.2 Firebase Cloud Functions .. 52

7.3 Svelte ... 53

7.4 Bootstrap Framework .. 54

7.5 Database Design ... 55

8. Conclusion .. 56

References .. 57

Appendices .. 59

Appendix A – GitHub Repository for the referee android wear watch 59

Appendix B – Firebase Firestore database setup ... 59

vi

Table Of Figures

Figure 1 – Use Case Diagram – Referee Android Wear ... 5

Figure 2 - Use Case Diagram - Secretary Web Application .. 6

Figure 3 - Use Case Diagram – Team Official Web App .. 6

Figure 4 - Use Case Diagram - Referee Web App .. 7

Figure 5 - Use Case Diagram – GAA Fan Web App .. 7

Figure 6 – Identity Relationship types table ... 10

Figure 7 -Model Redundancy – Province and Member ... 12

Figure 8 – Model Redundancy – County – Member ... 12

Figure 9 – Model Redundancy – Team sheet- Competition .. 12

Figure 10 – Model Redundancy – Match Report – Competition ... 13

Figure 11 – Model Redundancy Team – Score .. 13

Figure 12 – Model Redundancy – Team Sheet – Venue .. 13

Figure 13 – Model Redundancy – Match Report – Team .. 14

Figure 14 – Model Redundancy – Match Report – Substitute ... 14

Figure 15 – Model Redundancy – Match Report – Card ... 14

Figure 16 – Model Redundancy Match Report – Substitute .. 15

Figure 17 – Model Redundancy – Match Report – Injury .. 15

Figure 18 – Model Redundancy – Match Report – Member ... 15

Figure 19 – ERI Diagram ... 17

Figure 20 – User Interface Design – GAA Fan Web App .. 23

Figure 21 – User Interface Design – Game Management Login to home page 24

Figure 22 – User Interface Design – Secretary List Games .. 25

Figure 23 – User Interface Design – Secretary – Past Games ... 26

Figure 24 – User Interface Design – Secretary Match Report and Team Sheet 27

Figure 25 - User Interface Design – Referee Match Report and Team Sheet 28

Figure 26 - User Interface Design – Referee – View upcoming games 29

Figure 27 - User Interface Design – Referee – View Past Games 30

Figure 28 - User Interface Design – Team Official View Past Games and Single Games ... 31

Figure 29 – Android Wear Google Login ... 32

Figure 30 - User Interface Design – Android Wear View list of games 32

Figure 31 - User Interface Design – Android Wear Menu System 33

Figure 32 - User Interface Design – Android Wear Add/Update Score 34

Figure 33 - User Interface Design – Android Wear add/update card 34

Figure 34 - User Interface Design – Android Wear add/update substitute 35

Figure 35 - User Interface Design – Android Wear add/update Injury 35

Figure 36 - User Interface Design – Android Wear Bottom Menu 36

Figure 37 – Android Wear – Bottom Menu .. 37

Figure 38 - Android Wear – Bottom Menu ... 38

Figure 39 – Trello .. 39

Figure 40 – Project Schedule .. 40

Figure 41 – Kotlin Model code for converting Firestore Document to a Kotlin Object........... 44

Figure 42 – Kotlin Coroutines .. 45

Figure 43 – Firebase Cloud Firestore – Indexes .. 46

Figure 44 – Kotin – Creating a connection to the stopwatch service 47

Figure 45 – Kotin – Broadcast Receiver for the stopwatch .. 47

Figure 46 – Kotlin - LiveData for the stopwatch .. 48

file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721062
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721068
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721069
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721070
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721071
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721072
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721073
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721074
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721075
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721076
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721077
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721078
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721079
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721082
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721083
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721084
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721085
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721086
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721087
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721088
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721089
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721093
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721094
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721095
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721096
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721097
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721098
file:///C:/Users/sarah/OneDrive/Documents/WIT/EndOfYearAssignment/Final-Report-Sarah-Barron-2021.docx%23_Toc80721099

vii

Figure 47 - Kotlin – LiveData observer for changes in stopwatch time 48

Figure 48 -Android Wear Voice Input Program .. 51

Figure 49 - Transferring data from many collections and documents in Firestore 52

Figure 50 - Firebase Functions ... 53

Figure 51 - Firebase Logs ... 53

Figure 52 - Sample Difference between code needed for Svelte versus React 54

1

1. Introduction

1.1 Background of the problem

Currently GAA Referees entire process is done with pen and paper, they receive written

team sheets from team officials, they record all game details in a small note book, such as

scores, cards, substitutions and injuries. After the game they have to transfer the information

from the notebook to the match report sheet which takes time and finally they have to

organise the safe delivery of the match report to the secretary of the committee-in-charge.

Team Officials such as trainers, selectors or managers currently have to organise getting

team sheet booklets from their club/county secretary. They must remember to bring the team

sheets booklet to a game along with all the other things they need to remember to bring.

They then have to try fill the team sheet out on the side line, making changes can be messy

and often a fresh team sheet is needed which is wasteful. The team official has to remember

to give the team sheet to the referee and the opposing team, which is time consuming when

they could be spending that time preparing their team for a game.

The broadcast of live or final results is also random. Some clubs are great to update their

twitter accounts with live scores and some clubs don’t post any results, leaving GAA fans

wondering where they might find their teams live results today, will it be on Facebook,

Twitter or nowhere.

1.2 Description of the project aims

• I aim to create a basic management web application for secretaries to create, view,

update and delete games, view team officials team sheets and view the referees match

reports. Team-officials will be able to view upcoming games and create, view, update

and delete team sheets. Referees should be able to view their upcoming games,

create, view, update and delete match reports and view team sheets linked to games

they have been involved in.

• I hope to provide the Referee with an android wear application that they can create,

view, update and delete:

• Scores – points & goals, the team who scored and optional added information of

the player number for statistics.

• Cards – red, yellow and black cards and the team and player number.

• Substitutes – team, player number going off and player number coming on and if it

is a blood substitute or black card.

• Injuries – team, player number and a note

• Time – stop watch, with functions to start, pause, reset and stop the game.

• I also hope to include in the web application live scores. The GAA fan will be able to

filter these results by selecting their county/counties and club(s) they wish to follow.

2

2. Tools and technologies

2.1 Hardware

- Laptop to write code and do research

- Laptop / Tablet / Mobile to view the web application

- Smart Watch for the referee watch

2.2 Software

- Kotlin - a static type, object-oriented programming (OOP) language that is
compatible with the Java virtual machine, Java libraries and Android. (Kotlin, n.d.)

- HTML – a standard markup language for creating website pages. (HTML: HyperText

Markup Language, n.d.)

- CSS – Cascading Style Sheets describes how html elements should be look or be

displayed on a website page. (CSS: Cascading Style Sheets, n.d.).

- JavaScript – an object-oriented computer programming language that allows

interaction within web browsers (JavaScript, n.d.)

- Svelte - Svelte writes code that surgically updates the DOM when the state of your

app changes. It requires writing less code. Compiles your code to tiny framework-

less vanilla JavaScript, which means it starts and stays fast and it is reactive (Svelte,

n.d.)

- Google Firebase – backend application development software that supports android

and web applications

o Authentication – used to authenticate users with email and password and

google for the watch (Firebase Authentication, n.d.)

o Firestore –

“a flexible, scalable database for mobile, web and server development”.

“It keeps data synchronised across client apps using real-time listeners”. Used

for responsive apps that works regardless of network latency or internet

connection. Integrates with other firebase and google cloud products and

functions. (Firebase Firestore, n.d.)

o Realtime Database

“Store and sync data with our NoSQL cloud database. Data is synced across

all clients in realtime, and remains available when your app goes offline.”

(Firebase Realtime Database, n.d.)

o Functions – allows you run backend code when events are triggered by a

function. The function is stored in Google cloud in a managed environment.

(Firebase Cloud Functions, n.d.)

o Hosting “Firebase Hosting provides fast and secure hosting for your web app,

static and dynamic content, and microservices.” (Firebase Hosting, n.d.)

o Storage – used to store images of club and county crests.

- Android Studio – IDE for android development (Android Studio, n.d.)

- Visual Studio Code – Source Code Editor for development of the svelte web

application. (Visual Studio Code, n.d.)

- Bootstrap – Responsive mobile first frontend framework (Bootstrap, n.d.)

3

3. System Analysis and Design

3.1 User stories

Referee

I want to eliminate having to transfer information from my note book to the match report after
the game as this takes up a lot of time. This android wear application will solve this problem
as the information will be transferred automatically.

I want to eliminate having to organise the delivery of match report booklets and notebooks
from the county board as it takes time and effort and it will also save the county board
money on expenses. The web application will solve this as I will not need these items any
longer.

I want to track time so that I can track the amount of time played in a game. The android
wear application will solve this as it will include a stopwatch that I can start, pause, reset and
stop.

I want to track scores so that I can report an accurate score at the end of a game to my
match report. The android wear application will solve this as it will allow me to record scores.

I want to track cards so that I can report which players received cards at the end of the game
to my match report. The android wear application will solve this as it will allow me to record a
card colour, team and player number.

I want to track substitutes so that I can report substitutions at the end of a game and also to
know if the maximum number of substitutes have been used during a game.

I want to track injuries so that I can report injuries at the end of a game to my match report.
The android wear application will solve this as it will allow me to record an injury

I want to have instant accurate information during a game when asked for the time or score,
I don’t want to have to count up scores from a notebook each time. The android wear
application will solve this as it will display the time and score on the home page.

I want to view what upcoming games I am due to attend so that I don’t have to keep track of
the games in my diary any longer. The web application will solve this problem as I can view
this information clearly all in the one place from my computer or mobile phone.

I want to be able to submit the final match report instantly after a game so I don’t have to
organise the delivery of match reports to the secretary any longer as it takes a lot of time.
The android wear application will solve this problem as I can input the information directly
and submit it instantly.

I want to avoid having to remember to gather or mind team sheets any longer as it takes
time and team sheets can often be lost during a game when it falls out of a pocket. Having
the team management input their team sheet digitally will solve this problem.

4

Team Official

I want to eliminate having to organise the delivery of team sheet booklets and save the club
money having to use funds to purchase these booklets. The web application will solve this
as team sheets will no longer be required.

I want to be able to submit my team sheet digitally so that I don’t have to remember to bring
team sheets to a game along with all the other thing I need to remember to bring. The web
application will solve this as I will no longer need to bring these items.

I want to spend the time prior to the match preparing my team and not trying to locate the
referee or the opposition manager to give them copies of this team sheet. The web
application will solve this as I will be able to submit the team sheet digitally.

I want to be able to submit a draft team sheet the day or days before and only have to
update any changes that are needed prior to the game, without having to rewrite a new team
sheet it will also save me time and help me to be more prepared for the game. The web
application will solve this as I will be able to submit the team sheet at any time before the
game and update the team sheet whenever it is needed.

Secretaries

I want to be able to view all upcoming games. The web application can solve this problem as
it will allow me to view upcoming games.

I want to be able to create games, so that I have a record of upcoming games and the teams
and referees can have information about these games on their devices too. The web
application will solve this as I will be able to create, view, update or delete a game.

I want to be able to assign a referee to a game. The web application will solve this as I will
be able to add a referee to a game once one has been organised.

I want to be able to view referee match reports and team official team sheets as soon as
possible. The web application will solve this as I will be able to view these directly after the
team-official or referee has inputted them.

GAA Fan

I want to be able to view all live results for games in one place, without having to scroll
through Twitter or Facebook looking for the results. This web application will solve this
problem as I can go to the one place and view all the results in real time.

I want to be able to filter which results I see by my club or county. The web/mobile

application will solve this problem as I can filter results by club or county.

I want to be able to view the starting team and subs. The application will solve this as I will

be able to view the teams online.

5

3.2 Use Cases

3.2.1 Referee Android Watch

Figure 1 – Use Case Diagram – Referee Android Wear (Draw, n.d.)

6

3.2.2 Secretary

 Figure 2 - Use Case Diagram - Secretary Web Application (Draw, n.d.)

3.2.3 Team Official

Figure 3 - Use Case Diagram – Team Official Web App (Draw, n.d.)

7

3.2.4 Referee – Web Application

Figure 4 - Use Case Diagram - Referee Web App (Draw, n.d.)

3.2.5 GAA Fan

Figure 5 - Use Case Diagram – GAA Fan Web App (Draw, n.d.)

8

3.3 Database Design

3.3.1 Conceptual Database Design

A Secretary is a member and can create a game.

A Province is made up of counties, it has one secretary and has referees to referee county

games.

A County is made up of clubs, it has one secretary, teams and referees. They have at least

one venue where games are played.

A club has at least one venue where games are played. The club has a minimum of 15

members. The club has at least 1 team.

A member is a member of one club, they may or may not be a player, secretary, team official

or referee. A member has one membership type.

A player is on at least one team. A player can play a game, score, be substituted, get an

injury or get a card.

A team official is a member of a club. They are over at least one team which doesn’t have to

be their club or county. They can submit team sheets.

A referee can referee club games and may or may not be able to referee county games. A

referee is a member. A referee has at least one sport type that he referees. In a game a

referee can issue a card, record substitutes, scores and injuries. A referee submits one

match report after every game.

A competition has a grade and a sport type.

A team has one grade, one sport type, at least one team official, at least 7 players and a

team can play games. When a player scores the team is awarded the score.

A game has a competition, venue, 2 teams, at least one referee and sometimes there will be

one more standby referee. A game may or may not have scores, cards, substitutes or

injuries. Every game has 2 team sheets and one match report.

A score is scored by a player in a game. This score is given to the team. Scores must be

recorded in the match report

A card is given from a referee to a player in a game. The card must be recorded in the match

report.

A substitute occurs in a game and involves 2 players from one team. the substitution must

be recorded in the match report

A player can receive an injury in a game. An injury must be recorded in the match report

A team sheet is submitted by a team official and includes details about the game,

competition, the 2 teams, venue and a list of at least 7 players.

A match report is submitted by a referee and includes details about the game, competition,

venue the 2 teams, scores, cards, substitutes and injuries

9

1.1 Identify entity types

Province, County, Club, Venue, Member, Player, Secretary, Team Official, Referee,

Membership Type, Grade, Sport Type, Competition, Team, Game, Score, Card, Substitute,

Injury, Team Sheet, Match Report.

1.2 Identify Relationship types

secretary 1..1 creates 0..* game

province 1..1 contains 1..* counties

province 0..1 has 1..1 secretary

province 0..1 has 1..* referees

county 1..1 has 1..* clubs

county 0..1 has 1..1 secretary

county 1..1 has 1..* venue

county 0..1 has 0..* team

club 1..1 has 1..* venue

club 1..1 has 15..* members

club 0..1 has 1..* team

member 1..1 can be a 0..1 player

member 1..1 can be a 0..1 referee

member 1..1 can be a 0..1 team-official

member 1..1 can be a secretary 0..1 secretary

member 0..* has 1..1 membership-type

player 7..* is on 1..* team

player 14..* plays 0..* game

player 1..1 can 0..* score

player 2..2 can be a 0..* substitute

player 1..1 gets an 0..* injury

player 1..1 gets a 0..* card

team-official 1..* is over 1..* team

team-official 1..1 submits 0..* team-sheet

referee 1..2 referees 0..* game

referee 0..* has 1..1 sport-type

referee 1..1 issues 0..* card

referee 1..1 records 0..* substitutes

referee 1..1 records 0..* injuries

referee 1..1 records 0..* score

referee 1..1 submits 0..* match-reports

competition 0..* has 1..1 grade

competition 0..* has 1..1 sport-type

team 0..* has 1..1 grade

team 0..* has 1..1 sport-type

team 2..2 plays 0..* game

team 1..1 is awarded 0..* score

game 0..* has 1..1 competition

game 0..* has 1..1 venue

game 1..1 has 0..* score

game 1..1 has 0.* card

game 1..1 has 0..* substitute

game 1..1 has 0..* injury

game 1..1 has 2..2 team-sheet

game 1..1 has 1..1 match-report

score 0..* is recorded in 1..1 match-report

10

card 0..* is recorded in 1..1 match-report

substitute 0..* is recorded in 1..1 match-report

injury 0..* is recorded in 1..1 match-report

competition 1..1 is recorded in 0..* team-sheet

competition 1..1 is recorded in 0..* match report

team 1..1 is recorded in 0..* team-sheets

team 2..2 is recorded in 0..* match-reports

player 7..* is recorded in 0..* team-sheets

venue 1..1 is recorded in 0..* team-sheets

venue 1..1 is recorded in 0..* team-sheets
Figure 6 – Identity Relationship types table

1.3 Identify and associate attributes with entity

Central Council: name, address (addressLine1, addressLine2, town, county, Eircode,

country), email, telephone.

Province: name, address (addressLine1, addressLine2, town, county, Eircode, country),

email, telephone.

County: name, address (addressLine1, addressLine2, town, county, Eircode, country),

email, telephone, colours

Club: name, address (addressLine1, addressLine2, town, county, Eircode, country), email,

telephone, colours

Venue: name, address (addressline1, addressline2, county, Eircode, country), latitude,

longitude.

Sport Type: name

MembershipType: name, description

Member: name (firstName, lastName), address (addressLine1, addressLine2, town, county,

Eircode, country), email, telephone, mebershipDate, firstClub, ownClub

Player: DOB, name (firstName, lastName), address (addressLine1, addressLine2, town,

county, Eircode, country), email, telephone, sportType(name)[], registeredDate

Team Official: name (firstName, lastName), address (addressLine1, addressLine2, town,

county, Eircode, country), email, telephone.

Secretary: name (firstName, lastName), address (addressLine1, addressLine2, town,

county, Eircode, country), email, telephone

Referee: name (firstName, lastName), address (addressLine1, addressLine2, town, county,

Eircode, country), email, telephone, canRefCounty

Team: name

Grade: level, name

Competition: name, isNational.

11

Game: dateTime(date, time), linesmen[], umpires[], teamATotalGoals, teamBTotalsGoals,

teamATotalPoints, teamBTotalPoints

MatchReport: dateTime(date, time), substituteRef, linesman[], umpires[],

teamATookToField, teamBTookToField, gameStart, gameEnd, finalScore(teamAGoals,

teamAPoints, teamBGoals, teamBPoints), delayInStart(onTime, note), matchProgram,

jerseyNumCorrect(correct, note), linesmenAttire(good, note), pitch(marked, note), grass(cut,

note), additionalComments.

Card: timestamp, cardColor, note.

Substitute: timestamp, bloodsub.

Injury: timestamp, note.

Score: timestamp, goal, point

TeamSheet: timestampSubmitted, lineout [players[fieldPosition, jerseyNumber]]

1.4 Determine attribute domains

View on the ERI diagram (figure 19)

1.5 Determine candidate, primary, and alternate key attributes

Unique Entities will have their name as the reference all other entities will have generated

references

1.6 Consider use of enhanced modelling concepts

Member is a superclass and player, team official, secretary and referee are subclasses of

Member

Everyone is a member but a member may or may not be a player, team official, secretary or

referee and they can also be one, multiple or all of these roles, therefore it has an {optional,

and} relationship. The guidelines for representation of superclass and subclass with an

{optional, and} relationship is to have two relations, one relation for the superclass and one

relation for the subclass with one or more discriminations to distinguish the type of each part.

Therefore, I will create Member and MemberRole. I can therefore remove the Player,

Secretary, Team Official and Referee Entity.

Member: memberReference, name (firstName, lastName), address (addressLine1,

addressLine2, town, county, Eircode, country), email, telephone, membershipDate, firstClub,

ownClub.

MemberRoles: secretaryOfClub, secretaryOfCounty, secretaryOfProvince,

secretaryOfCouncil, refereeOfCounty, refereeOfClub, teamOfficial, clubPlayer, countyPlayer,

DOB, registeredDate

12

1.7 Check model for redundancy

• Figure 7 shows redundancy between the province, county and member. The

province can be found through the county therefore the relationship between the

member and the province can be removed

• Figure 8 shows redundancy between the county, club and member. The county can

be found through the club therefore the relationship between the member and the

county can be removed.

• Figure 9 shows redundancy between the game, team sheet and competition. The

team sheet can find out the competition from the game therefore the relationship

between team sheet and competition can be removed.

Figure 7 -Model Redundancy – Province and Member (Balsamiq Cloud, n.d.)

Figure 8 – Model Redundancy – County – Member (Balsamiq Cloud, n.d.)

Figure 9 – Model Redundancy – Team sheet- Competition (Balsamiq Cloud, n.d.)

13

• Figure 10 shows redundancy between the game, match report and competition. The

match report can find out the competition from the game therefore the relationship

between the match report and competition can be removed.

• Figure 11 shows redundancy between Team, Player and a Score. The Team can be

found through the Player therefore I can remove the relationship between the Team

and the Score

• Figure 12 shows a redundant relationship between the game, team sheet and the

venue. The venue can be found via the game therefore the relationship between the

venue and the team sheet can be removed.

Figure 10 – Model Redundancy – Match Report – Competition (Balsamiq Cloud, n.d.)

Figure 11 – Model Redundancy Team – Score (Balsamiq Cloud, n.d.)

Figure 12 – Model Redundancy – Team Sheet – Venue (Balsamiq Cloud, n.d.)

14

• Figure 13 shows a redundant relationship between the match report, team and the

game. The match report can get the team from the game, therefore, the relationship

between the match report and the team can be removed.

• Figure 14 shows a redundant relationship between the match report, score and the

game. The match report can get the score from the game, therefore, the relationship

between the match report and the Score can be removed.

• Figure 15 shows a redundant relationship between the match report, card and the

game. The match report can get the card from the game, therefore, the relationship

between the match report and the card can be removed.

Figure 13 – Model Redundancy – Match Report – Team (Balsamiq Cloud, n.d.)

Figure 14 – Model Redundancy – Match Report – Substitute (Balsamiq Cloud, n.d.)

Figure 15 – Model Redundancy – Match Report – Card (Balsamiq Cloud, n.d.)

15

• Figure 16 shows a redundant relationship between the match report, substitute and

the game. The match report can get the substitute from the game, therefore, the

relationship between the match report and the substitute can be removed.

• Figure 17 shows a redundant relationship between the match report, injury and the

game. The match report can get the injury from the game, therefore, the relationship

between the match report and the injury can be removed

• Figure 18 shows a redundant relationship between the match report, member and

the game. The match report can get the member from the game and the games

relationship with the team sheet, therefore, the relationship between the match report

and the member can be removed

Figure 16 – Model Redundancy Match Report – Substitute (Balsamiq Cloud, n.d.)

Figure 17 – Model Redundancy – Match Report – Injury (Balsamiq Cloud, n.d.)

Figure 18 – Model Redundancy – Match Report – Member (Balsamiq Cloud, n.d.)

16

1.8 Review conceptual data model with user

I did Continuous reviewing with referee and the GAA Official Guide (Referee Handbook)

1.9 Main user transactions

View live scores – live score will include competition name, score time, score club name,

score type, score player name, TeamA name, TeamB name, teamA total goals, teamA total

points, TeamB total goals, TeamB total points.

CRUD operations for game, card, substitute, injury, team sheet and match report.

17

3.3.2 Entity Relationship Diagram

Figure 19 – ERI Diagram (Draw, n.d.)

18

3.3.3 Database Model

I compared weather to use SQL or NoSQL after my research I decided I would use a NoSQL

database.

The GAA organisation has such a big hierarchy with many councils, committees, clubs,

competitions, tournaments, officers, members it would require a lot of splitting to store

different entities in a relational database and then a lot of joins to retrieve attributes from

different tables when information is required.

As there are so many games, scores, cards, substitutes, injuries, team sheets, and match

reports which occur each year the database will need to support large volumes of data in

years to come. NoSQL databases can handle this better as they can run efficiently on

clusters.

NoSQL allows for easier to retrieve data as it is all stored in the one place.

NoSQL is more flexible and scalable. This current model is a simplified model to support the

creation and querying of games, scores, cards, substitutes, injuries, match reports, team

sheets. If I want to add features such as statistics, registration, or an extended management

system for the entire GAA organisation I can take advantage of the NoSQL database and

add fields to documents, embed objects and add subcollections. I can scale the model

easily.

Atlas MongoDB V Firebase Databases

Atlas MongoDB

One of the most popular NoSQL databases is MongoDB, it is cloud based and supports

horizontal scaling using shared clusters and includes fault tolerance using replica sets,

storing the replicate at another site, it is also a consistent database. Atlas is fully managed

and guarantees

“Availability, scalability and compliance with most demanding data security and privacy

standards”. (MongoDB, n.d.)

Cost: shared $0 dedicated $57.00, serverless from $0.30/million reads. (MongoDB Pricing,

n.d.)

firebase

Firebase is also cloud based but it has more focus on mobile and web applications. Firebase

is scalable. It can be used as a full back-end as a service with minimum effort with

connections to authentication, messaging, functions and hosting. It is very user friendly, it

supports real-time data, updates in data are recognised without refreshing the database, and

real-time data is synchronized across devices and browsers. It has offline mode features

meaning the app can write, read, listen to and query data even if the device is offline and

has no network. When the device comes back online the data stored locally is synchronized

with firebase.

Cost – Pay as You Go (Firebase Pricing, n.d.).

19

Firestore

(Firestore Pricing, n.d.)

Free for 1GB of storage and costs $.108c per Gb thereafter.

Allows 20K writes per day for free and costs $.18c per 100K thereafter.

Allows 50K reads per day for free and costs $.06c per 100K thereafter.

Allows 20K deletes per day for free and costs $.02c per 100K thereafter.

Realtime Database

(Firebase Pricing, n.d.)

Free for 1Gb of storage and costs $5.00 per Gb thereafter

Free for 10GB downloaded per month and costs $1 per GB thereafter

I have chosen to use firebase over Atlas as it has more focus on android development.

Firebase also gives extra functionality to use it as a full back end as a service allowing me to

connect to features such as authentication, messaging, functions and hosting. it supports

real time data which will be used to update live scores on the database. The data will also be

synchronised across the various devices that will be used to connect to the database. It also

has the added feature of offline mode which will benefit referees when they are in venues

with limited to no network. As I will be storing personal data that will need to be secured and

compliance with GDPR is absolutely necessary the fact that firebase encrypts data in transit

and at rest in Authentication, Firestore, Realtime Database and Functions is an added bonus

as I won’t have to carry out further encryption of my own.

Firebase – Realtime Database V Firestore

I compared Firestore and Realtime Database. Both databases have security rules to protect

data. integration with functions, authentication, messaging, storage etc. Both have mobile

first real-time SDKs. Both support the storing of data locally. Both can work off line. Both can

be used in the same app.

Realtime Database

It is easy to store data in the Realtime database, however complex hierarchical data is

harder to deal with at scale, it has limited sorting and filtering functionality, both sorting and

filtering can’t be done together. A query will return the entire subtree, queries don’t need an

index but this can cause problems if the data set scales. scaling requires sharding. It

charges for bandwidth and storage but at higher rates to Firestore.

Firestore

Stores data as collections or documents. Is good for more complex hierarchical data and is

easier to scale and organise, it allows the use of subcollections within documents. It doesn’t

need as much denormalising than the Realtime Database would. Firestore has slightly

20

higher uptime to Realtime Database. Firestore has better filtering and sorting functionality, it

allows you to chain filters, and you can do filtering and sorting at the same time. Queries

return whole documents in a collection, it doesn’t return subcollection data. scaling is

automatic. Charges are based on transaction for read, writes and deletes but at a lower

rates, bandwidth and storage.

I decided to use Firestore for the hierarchical data model that is needed for the GAA

organisation, it has better uptime, better filtering and sorting, scaling is automatic and it has

cheaper rates.

I decided to use the real-time database to store the daily live score details, this will take

advantage of the two free tiers, reduce the number of queries needed to retrieve the required

information, and Live Scores can be deleted daily/weekly as they don’t need to be stored

long term as the main information is being stored in the Firestore documents that can be

used for future information and statistics.

3.3.4 Document Oriented Modelling

Embedding

A game has a one-to-one relationship with match report and team sheets, they are

frequently accessed together, and the game and match report have a lot of duplicate fields. I

have therefore decided I will use embedding. I will embed the match report and team sheet

into the game.

The member has a one-to-one relationship with member role, they are also frequently

accessed together, therefore I have decided to embed member role into member.

Referencing

The Province, County, Club and Member all have contact details such as address, telephone

and email which will not be acessed often in this case I have decided to use referencing. I

will add a Contact Details entity and store a reference to the contact details in the Province,

County, Club and Member.

For all other relationships between entities, I will add a reference to one side of the entity.

21

3.4 Functional Requirements

• A Referee can login to the web application and the android watch.

• On the web application a referee can:

o View upcoming games they are refereeing.

o View past games that they have refereed.

o Create a match report.

o View a match report.

o Edit a match report.

o Delete a match report.

o View Team Sheets for games they have refereed.

• On the android wear application, a referee can:

o Start a game.

o Pause a stopwatch.

o Start a stopwatch.

o Reset a stopwatch.

o End the game.

o Create a score.

o View a score.

o Edit a score.

o Delete a score.

o Create a card.

o View a card.

o Edit a card.

o Delete a card.

o Create a Substitution.

o View a Substitution.

o Edit a Substitution.

o Delete a substitution.

o Create an Injury

o View an Injury

o Edit an Injury

o Delete and Injury

o Add the time teams entered the field

o Add match report additional comments.

o View team sheets

• A Team Official use the web application to:

o Login

o View upcoming games for their team(s)

o Create a team sheet for an upcoming game

o View a team sheet for an upcoming game.

o Edit a team sheet for an upcoming game.

o Delete a team sheet for an upcoming game.

• A Secretary use the web application to login

• Secretaries can:

o View games.

o Create a game.

o Edit a game.

22

o Delete a game.

o View team sheets for a completed game.

o View match reports for completed games

• A GAA fan can use the web application to:

o View live scores.

o Filter live scores

o View team sheets

3.5 Non-functional requirements

• Both the web application and the android application should be secure.

• There should be access control.

• It should have good UI/UX so that it is clear and easy to use.

• The android watch should be quick and easy to navigate.

23

3.6 User interface design

3.6.1 GAA Fan Web Application

Figure 20 – User Interface Design – GAA Fan Web App (Balsamiq Cloud, n.d.)

24

3.6.2 GAA Game Management

Login – Home Page

 GAA Secretaries, Team

Management and Referees must

first be authenticated by firebase in

order to login.

Depending on the Role you will be

redirected to the corresponding

dashboard

Figure 21 – User Interface Design – Game Management Login to home page (Balsamiq Cloud, n.d.)

25

Secretary

Figure 22 – User Interface Design – Secretary List Games (Balsamiq Cloud, n.d.)

26

Figure 23 – User Interface Design – Secretary – Past Games (Balsamiq Cloud, n.d.)

27

Figure 24 – User Interface Design – Secretary Match Report and Team Sheet (Balsamiq Cloud, n.d.)

28

Referee

Figure 25 - User Interface Design – Referee Match Report and Team Sheet (Balsamiq Cloud, n.d.)

29

Figure 26 - User Interface Design – Referee – View upcoming games (Balsamiq Cloud, n.d.)

30

Figure 27 - User Interface Design – Referee – View Past Games (Balsamiq Cloud, n.d.)

31

Team Official

Figure 28 - User Interface Design – Team Official View Past Games and Single Games (Balsamiq Cloud, n.d.)

32

Android Wear Application

Google Login

 Figure 29 – Android Wear Google Login

List of games

 Figure 30 - User Interface Design – Android Wear View list of games (Balsamiq Cloud, n.d.)

33

Menu layout

Figure 31 - User Interface Design – Android Wear Menu System (Balsamiq Cloud, n.d.)

34

Create / Edit Score

Create / Edit Card

Figure 32 - User Interface Design – Android Wear Add/Update Score (Balsamiq Cloud, n.d.)

Figure 33 - User Interface Design – Android Wear add/update card (Balsamiq Cloud, n.d.)

35

Create / Edit Substitutes

Create / Edit Injuries

Figure 34 - User Interface Design – Android Wear add/update substitute (Balsamiq Cloud, n.d.)

Figure 35 - User Interface Design – Android Wear add/update Injury (Balsamiq Cloud, n.d.)

36

Bottom Activity Navigation

Figure 36 - User Interface Design – Android Wear Bottom Menu (Balsamiq Cloud, n.d.)

37

Figure 37 – Android Wear – Bottom Menu (Balsamiq Cloud, n.d.)

38

Figure 38 - Android Wear – Bottom Menu (Balsamiq Cloud, n.d.)

39

4. Methodology

4.1 Methodology selection

I found as the project had so many different areas to complete looking at the project as a
whole was overwhelming so I decided to use an agile methodology in order to plan and
develop the project. I used weekly sprints to break the project down into smaller sections
and set goals for the week ahead.

Using an agile approach allowed me to break all parts of the project in sections and then
split each section into smaller parts, this really helped as it allowed me to focus on just one
part or a few smaller parts for the week ahead.

4.2 Process outline

I used a software tool called Trello (Trello, n.d.) to create lists of things I needed to do and
things that I had completed. This allowed me to see my progress and what my plan for the
week was clearly and visually. Each day I worked on the project I also used Trello to
complete a goals list for the day. This boosted motivation each time you completed
something on your Todo list and moved it to the completed list.

Figure 39 – Trello (Monosnap, n.d.)

40

4.3 Project Schedule

Figure 40 – Project Schedule

Sept 2021 Presentation

28 Aug - 28 Aug 2021 Presentation Slides

27 Aug - 27 Aug 2021 Video Demo

26 Aug - 26 Aug 2021 Handbook

21 Aug - 25 Aug 2021 Final Report

31 May - 20 Aug 2021 GAA Management Web App

24 May - 30 May 2021 Live Scores

17 May - 23 May 2021 Cloud Functions

29 Mar - 16 May 2021 Android Wear App

8 Mar - 28 Mar 2021 Interim Report

11 Jan - 7 Mar 2021 Android Wear App

8 Jan - 10 Jan 2021 Final Proposal

30 Nov 2020- 7 Jan 2021 Research and Database Design

29 Nov 2020 Init ial Proposal

41

5. Implementation

Table 1 Implementation

weeks Start Date End Date Action

1 1 22/11/2020 29/11/2010 Initial proposal – background, aims, technologies, tools and
frameworks, proposed process,

2 2-8 30/11/2020 10/01/2021 Mobile Development Module and assignment

3 9 11/01/2021 17/01/2021 Decide on and design the database needed for the application

4 10 18/01/2021 24/01/2021 Design use cases and wireframes for the project

 11-16 25/01/2021 21/02/2021 Break due to covid and home schooling

5 17 22/02/2021 28/02/2021 Create the base web application with Node JS

6 18 01/03/2021 07/03/2021 Create a Firebase project and connect to the Node JS project

7 19 08/03/2021 14/03/2021 Setup Firebase authentication in the Node JS Web App

8 20 15/03/2021 21/03/2021 Research Android Wear Development, read android wear
documentation, do some of their code labs

9 21 22/03/2021 28/03/2021 Setup the starter android wear application and setup google
authentication with firebase

10 22 29/03/2021 04/04/2021 Setup Layouts for the android wear app – Navigation, Fragments
for Stopwatch, Score, Card, Substitute, Injury

11 23 05/04/2021 11/04/2021 Create Database, JSON objects for all entities provinces,
counties, clubs, venues, contact details, grades, competitions,
sports type, members, teams, games, scores, substitutes, injuries
and cards. Write a program to populate Firestore with the JSON
objects

12 24 12/04/2021 18/4/2021 Start the Interm Report – use case diagrams, wireframes and
database design

13 25 19/4/2021 25/4/2021 Create List views for Scores, Cards, Substitutes and Injuries on
the wear app. Using fragments and recycler views

14 26 26/4/2021 2/4/2021 Create a Stopwatch for the wear application and – Complete
Interm report

15 27 3/5/2021 9/5/2021 Create Score, Card, Substitute and Injury

16 28 10/5/2021 16/5/2021 Add voice notes for cards, injuries and general notes

17 29 17/5/2021 23/5/2021 Create Cloud Functions to schedule a daily retrieval of all games
happening on that day and a function that listen for scores from
the referees watch and updates the Realtime database.

18 30 24/5/2021 30/5/2021 Create a Svelte Web App to listen for live scores and update the
UI. Add a Filter and team sheets

19 31 31/5/2021 6/6/2021 Setup the GAA Officials App and Login to Firebase

20 32 7/6/2021 13/6/2021 Setup the GAA Officials App navigation, persistence of svelte
store to local storage, retrieve upcoming games for a referee,
retrieve all the documents for the games firebase reference and
retrieve the information needed to be viewed on svelte frontend.

21 33 14/6/2021 20/6/2021 Retrieve upcoming game details for club and county secretaries
from Firestore. Change the layout of the dashboard as the user
can have more than one role in the GAA. Add an Accordion of
upcoming games for each Role.

 34-35 21/6/2021 4/7/2021 Family Bereavements

22 36 5/7/2021 11/7/2021 Retrieve upcoming game details for provincial and council
secretaries and team official’s games from Firestore. Add a button
for each game to redirect to a single game.

23 37 12/7/2021 18/7/2021 Create a single game page layout, retrieve the game from the
local storage, if it doesn’t exist there retrieve it from Firestore.
Display the details.
Add buttons to link the match report and team sheets and add
authentication to who can view and use this link.

 38-40 19/7/2021 8/8/2021 Holidays

24 41 9/8/2021 15/8/2021 View Match Report – retrieve details from Firestore and create
the view in the web app with svelte.
Council Secretary. Provincial Secretary, County Secretary Create
game and add the details to Firestore.

25 40 16/8/2021 22/8/2021 Team official – add team sheet and save to firestore.
Setup hosting for the game officials web application.
Add times for game start, end, teams entering the field and extra
information to the android watch

26 41 23/8/2021 29/8/2021 Final Report Video, Presentation Slides, and Submit project.

42

6. Project Evaluation

6.1 What were the Outcomes of the project

The objectives of this project were

➢ To create a basic management web application for secretaries to create, view,

update and delete games, view team officials team sheets and view the referees

match reports, for team officials to view upcoming games and create, view, update

and delete team sheets and for referees to view upcoming and past games, create,

view, update and delete match reports and view team sheets linked to games the

referee was involved in.

➢ To provide the referee with an android wear application that can create, update,

delete and view scores, cards, substitutes, injuries and run a stopwatch functionality.

➢ To provide the GAA fans with a web application for live scores that could be filtered

to the user’s preference.

6.1.1 Referee Android Wear Application

The following is a list of the objectives I met for the referee’s android wear application

➢ Google Login and Logout.

➢ Retrieve and view today’s games.

➢ Start, stop, pause, reset and view stopwatch.

➢ View stopwatch, teams and total score on the home layout.

➢ Create a score (team, score type and player).

o Check to make sure the player being inputted for the score is on the field.

➢ Create a card (team, card type, player and notes).

o Checks if the player being given the card is on the field.

o If a yellow card is given a check is made to see if the player is already on a

yellow card. If they are a message is shown to the referee to send player off.

o If a black card is given a check is made to see if the player is already on a

black card. If they are a message is shown to the ref to send the player off

and another player can-not replace this player

o If a red card a message is shown to the referee to send the player off

➢ Create a substitute with team, player on, player off, blood sub and black card options.

o A check is made to make sure the player going off is actually on the field.

o A check is made to make sure the player coming on is not on the field of play

already.

o A check is made to check how many subs a team has used if they have used

5 substitutions or 3 black card substitutions a message is shown to tell the

referee the substitution can’t happen as the team is at its maximum.

➢ Create an injury (team, player and a note about the injury).

➢ Add additional information for the match report.

➢ Add the times both teams took to the field for the match report.

➢ Start and end a game storing the times for the match report.

o Game can’t be started until both team sheets have been submitted.

o Cards, Scores or Substitutes can’t be created until the game is started.

➢ View both teams team sheets.

➢ View a list of all scores, cards, substitutes or injuries created during the game.

➢ All data is stored locally and in Firestore.

43

6.1.2 Live Scores Web Application

The following is a list of the objectives that were met for the Live Scores web application.

➢ List all of the current day’s games.

➢ Update the total score for a game live.

➢ Update the latest score live (time, team, score type and player name).

➢ Update all of the games scores live.

➢ View every team’s team sheet.

6.1.3 Game Management Web Application

The following is a list of the objectives that were met for the Game Management web

application.

➢ List all upcoming games and past games associated to the user.

➢ Council, Provincial and County Secretaries can create a game.

➢ Team Officials can submit a team sheet.

➢ View team sheet.

➢ Secretary associated with a game and the Referee of the game can view a match

report.

➢ Information retrieved and stored in Firebase Firestore

6.2 Were the Objectives I set out for the project met

Not all objectives were met that I set out for the project, this was due to time constraints, with

more time I could have met all objectives.

6.2.1 Referee Android Wear Application

The following is a list of objectives that were not met for the Referee Android Wear

Application.

➢ Update and delete scores, cards, substitutions, injuries and additional notes.

➢ End first half.

6.2.2 Live Score Web Application

I met all objectives set out for the Live Score Web Application.

6.2.3 Game Management Web Application

The following is a list of objectives that were not met for the Game Management Web

Application.

➢ Secretaries to be able to update and delete games.

➢ Secretary associated with a game to be able to submit a team sheet.

➢ Secretary and team official associated with a game to be able to update and delete

and team sheet.

➢ Referees to be able to create, update and delete a match report.

44

6.3 Problems that occurred and how I solved them

6.3.1 Using Node for the web application.

After setting up the initial NodeJS web application part of the project, I began to look into

how to connect a NodeJS web application to Firebase authentication and Firestore. Through

my research I learned that by using Firebase I didn’t really need to have my own back-end

server, I could create a serverless web application with Firebase using their authentication,

databases, security rules, functions and hosting. I had spent three weeks working on

building the NodeJS web application so it was hard to scrap the work, but I felt it was the

right thing to do as I had all the functionality that I needed within Firebase without adding the

extra overhead of a backend server, which I would have had to manage on an ongoing

basis.

In order to solve this problem, I decided to use Svelte for the serverless frontend and then

connect the frontend to Firebase for the backend of the web application.

6.3.2 Converting a Firestore Document into a local data class model

After retrieving a document from Firestore I was having difficulty converting it to a data class

object. The first thing I learnt was that the fields in the data class model must be of type var

and must be initialized with a value or null. I also needed to use Firestore annotations

(Annotations, n.d.). For the Documents Id I needed the annotation @DocumentId, for

timestamps I needed the annotation @ServerTimestamp, and for document references the

type required was DocumentReference and it needed to be parcelled with the tag

@RawValue. In figure 41 you will see how the GameModel needed to be setup in order for

the Firestore Document to be converted to a Kotlin object.

Figure 41 – Kotlin Model code for converting Firestore Document to a Kotlin Object

45

6.3.3 Fetching data from Firestore

While fetching data from Firestore, data was being run asynchronously and was being

returned out of sync. I required data about the team sheet from Firestore, in order to use in

the next query to Firestore for the team’s player documents, therefore I need these calls to

be sequential. This was causing errors and null pointer exceptions. In order to solve this

problem, I needed to find a way to write asynchronous code sequentially. I looked at RX and

Threads but, in the end, I decided to use coroutines as it eliminated the use of call-backs

and a lot of extra code. Coroutines are easier to write, are sequential, non-blocking and don’t

cause unnecessary memory overhead. They don’t block the main thread; therefore, the user

will not see any difference, they won’t be waiting for the UI to load or have their application

crash unexpectantly.

Figure 42 – Kotlin Coroutines

6.3.4 Firebase Cloud Firestore Index

On occasion when I was fetching Documents from Firestore, errors were occurring in

relation to needing indexes for Firestore queries. Indexes in Firestore are used for

performance. When I send a query from my application, if Indexes for that query are setup in

Firestore, Firestore can use the index to quickly lookup the locations of the items that I have

requested from my query.

Once I setup each query and had them retrieving the correct documents, I was able to setup

a composite index for the query in the Firestore console, which stores a sorted mapping of

all the documents in a collection based on the order I declared in my queries

46

Figure 43 – Firebase Cloud Firestore – Indexes (Monosnap, n.d.)

6.3.5 Running a Stopwatch for a long period of time without killing the process when

changing between fragments.

When I first created the stopwatch, I did this in the Stopwatch Fragment, when I was in this

fragment the stopwatches time incremented as it should but when I navigated to a different

fragment the stopwatch functionality was killed and the time was reverted back to zero on

return to the Stopwatch Fragment.

I needed a way for the stopwatch to run for over 70 minutes without blocking the main thread

and without being cancelled or killed when changing between fragments. I decided to use

android Services to complete this task (Android Services, n.d.). Services allow for long

running operations. These operations can be run in the background. It had the added

functionality of allowing me to bind from the main activity to the Service allowing me to send

a signal to the Service to tell it to run or pause the stopwatch.

47

Figure 44 – Kotin – Creating a connection to the stopwatch service (Monosnap, n.d.)

The one problem with Services is it doesn’t allow you to update the UI it is completely

separate. I needed to update the UI with the current stopwatch time. To solve this problem, I

used Broadcasts (Android Broadcast, n.d.).

Broadcasts allowed me to be able to send a message from the service to the main activity

with the current seconds. In the main activity I could then use this value to work out the

hours, minutes and seconds and format them into string format.

Figure 45 – Kotin – Broadcast Receiver for the stopwatch (Monosnap, n.d.)

48

As the Service and the BroadcastReciver were communicating the current time. I needed a

way to communicate this to the UI of the stopwatch fragment. To do this I decided to use

android LiveData.

I created a ViewModel class to hold the MutableLiveData objects time. When the

BroadcastReceiver receives a message with the current seconds. Using the seconds to

calculate the time String I was then able to update the Live Data object for time.

Figure 46 – Kotlin - LiveData for the stopwatch (Monosnap, n.d.)

In the Stopwatch Fragment I was able to create an observer of the LiveData Object time,

therefore every time the LiveData Object time changes the Stopwatch Fragments UI is

updated with the new value for time.

Figure 47 - Kotlin – LiveData observer for changes in stopwatch time (Monosnap, n.d.)

6.3.6 Firebase Functions running slow

I set up Firebase cloud function to run every day deleting the previous days games and

retrieving the upcoming days games, as well as a function for listening for score updates. On

initial setup the functions were running really slowly they were taking approximately 5-6

minutes for a function to run. The code was running asynchronously therefore the return

success message was being returned before the data was returned from the databases.

In Firebase functions when a response is received from the function the function is then

considered stale and this effects performance considerably (Firebase Firestore functions

working slow or returning too quick, n.d.)

Adding an async await function before returning a response from the cloud function meant

the function ran in a few seconds rather than minutes.

49

6.3.7 Svelte Stores Persistence

I used svelte stores to store the user’s information so that the values could be accessed by

multiple unrelated components. I set this up with the help of the svelte tutorials ((Writable

Stores, n.d.)), however whenever I refreshed the browser the values were not persistent and

were reset back to their initial default values. In order to persist the data, I needed to store

the values to local storage. I installed a package called svelte-local-storage-store (Svelte

Local Storage Store, n.d.) which did all the hard work in the background to save the store

values locally. Now whenever you refresh the page the store values are persistent.

50

7. Reflection on Learning

7.1 Android Wear Development

While I had completed the module Mobile Development, for this project I was required to do

extra research and learning in order to create the android wear project. I began my learning

with the Android wear online documentation and followed on with some of their code labs

and training (Android Wear, n.d.).

7.1.1 Authentication

The first hurdle was setting up authentication, I decided to use Google Sign-in as it offers the

best user experience and it is easy to support (Android Wear Authentication, n.d.)

I needed to integrate the Android Wear Emulator with my Google Account. This was a time-

consuming task but once I got it setup, I didn’t have any issues with it again (Start

Integrating, n.d.).

7.1.2 Layouts and navigation

Other issues I faced and had to learn more about was the wear layouts and the biggest

learning curve was the navigation. I found the Android wear-os samples an excellent

resource which helped me see the code and how it all worked (Wear Drawers, n.d.).

7.1.3 Retrieving voice notes and converting them into text

As the watch is such a small device and would be difficult to enter long amounts of text, I felt

it was necessary to add voice input for any notes. Again, this was new to me but it was well

documented on the Android website and it was an easy functionality to add (User

Input/Voice, n.d.).

Every wearable OS device has a microphone, I used the emulators microphone to record

voice. I was then able to use the systems build in Speech Recognizer to retrieve the voice

input from the referee.

When the microphone button is pressed, an activity which returns a result is started and

uses the ACTION_RECOGNIZE_SPEECH action. The ACTION_RECOGNIZE_SPEECH

prompts the referee to speak. the voice is sent to the speech recognizer and the result is

returned. I added the required intent EXTRA_LANGUAGE_MODEL which signifies which

speech model to use. The model I add was LANGUAGE_MODEL_FREE_FORM which is

used for dictation rather than short commands for web searches. I set the language to the

local language using EXTRA_LANGUAGE_MODEL.

51

The referee can add as many notes as they want, I add them to an array of notes for cards,

injuries, substitutes and additional notes.

Figure 48 -Android Wear Voice Input Program (Monosnap, n.d.)

7.1.4 Live Data

During our Mobile Development module, we were encouraged to do extra learning on Live

Data, I didn’t get around to it for that project, but I needed it for this project. To learn more

about it I followed the Live Data code lab (kotlin android training live data, n.d.)

LiveData is an observable data holder which was required for the stopwatch time. I needed

the time to continue in the background and not be killed when the stopwatch fragment was

destroyed. I also used it to keep track of total points and goals for each team.

52

7.2 Firebase Cloud Functions

For the Live Scores web application, I decided to use Firebase Realtime Database. I choose

to do this as the information for the Live Scores web application is data that could be

accessed thousands of times every day. I needed a database that I could access the

information quickly and without too many queries.

I was storing all the information from the GAA game management web application and from

the Referees android wear application in Firestore. If I had used Firestore for the live scores

it would have required hundreds of queries every time someone accessed the Live Scores

web application to show the games, this would slow down the Live Scores web application

considerably.

I needed a way to run these queries only once per day to get the game information from

Firestore and create the games in the Realtime database. The Answer to this was Firebase

Cloud Functions.

Cloud Functions in Firebase is serverless, and allowed me to create functions that run in the

background. I setup 2 scheduled functions to run just after midnight every day. The first

function deletes all the previous days games from the database and the second function

gathers all the information needed for the game from the various documents and collections

in Firestore and creates this game in the Realtime database.

Figure 49 - Transferring data from many collections and documents in Firestore

to one quick access Realtime Database Reference (Paint) (Monosnap, n.d.)

53

I also took advantage of Firebase Functions to listen for new scores in the Firestore

Database. When a new score is saved the Firebase Function queries all the information

needed about that score and creates an entry into the Realtime Database for that game

which is then shown on the Live Score web application.

Figure 50 - Firebase Functions (Monosnap, n.d.)

Figure 51 - Firebase Logs (Monosnap, n.d.)

7.3 Svelte

As I previously mentioned, I decided to change from using a node server web application to

a serverless web application. To do this I needed to decided what frontend framework I

would use. I had already learnt React during our ICT module; however, my lecturer Eamonn

had mentioned a new framework called Svelte that would reduce the amount of code

needed compared to React. I had to decide whether to complete the frontend of the project

using with the knowledge I already had with React or to take on the challenge to learn this

new framework. To make my decision I decided to complete some of the tutorials on the

Svelte website (Svelte Tutorials, n.d.).

I learnt that svelte was similar to React however the main difference is that Svelte converts

the app into JavaScript at build time rather than at run time, which meant Svelte would have

a faster loading time. While Svelte had similarities with React with components, props,

Lifecycles and events. I found Svelte much easier to learn and use. The amount of code

needed for Svelte to React was much less.

54

Figure 52 - Sample Difference between code needed for Svelte versus React

(Write Less Code, n.d.) (Monosnap, n.d.)

Overall, I am delighted I took the plunge to learn and use Svelte over React for the headless

frontend of the Live Scores and Game Management web applications project. I really

enjoyed learning it and using it and it is definitely a Framework, I will continue to learn and

practise and hopefully use again in future projects.

7.4 Bootstrap Framework

As a GAA fan or official a lot of your time is spent on the side line of a field so it was

important to me to have fully responsive web applications, so that live scores or team sheets

could be checked or updated from the mobile phone on the side line or from the laptop at

home.

A few years back I learned and used the Bootstrap front-end framework for some projects. I

decided I would use the Bootstrap Framework for this web application as I found it had

excellent responsiveness, the web application could look great across multiple devices

easily using this framework. I needed to go back and refresh my memory of Bootstrap and

also learn a lot of new things due the changes since I last used it, but it came back to me

55

easy enough and I am delight with the fact users can use the web applications on mobile,

tablet, laptops or desktops.

7.5 Database Design

The courses module in Database and Design was a great benefit to me for designing the

database, as there were so many components and hierarchy involved it took a lot of work to

design the database and the courses information was vital in me completing this. This

project was a great way for me to put into practice what I had learnt, it made me realise how

important the initial design is and I thoroughly enjoyed the process.

One of the things we learned was that sometimes it is of more benefit to store all the data for

an entity rather than storing references to other entities and this was one mistake I think I

made when designing the Database. For the Game Management web application, I needed

to use a lot of queries to retrieve the data needed to build upcoming or past games. I only

had a few games stored in the Firestore Database but it took approximately 17 seconds to

retrieve the data from the various collections and re-build these games. This in my opinion

was very slow.

If I was back again, I would not store the game with References to collections such as

Members, Competition, Scores etc. I would store all the information needed for a game in

the Game document without any references. This would make the retrieval of a games data

quicker and easier and it would require a lot less code.

56

8. Conclusion
The aim of this final project for me was to create software to solve a problem. From my

experience as a GAA fan, LGFA Secretary, Registrar and Trainer, I could see a big problem

and gap in the digital world of the GAA especially at club level. Currently GAA Referees

entire process is done with pen and paper, written team sheets are being handed over by

team officials, and trying to find live scores for a game is difficult. Therefore, I decided this

would be a good and unique project to complete.

While I didn’t meet all objectives set out, with more time, I would definitely have been able to

meet those objectives. In the future I would like to expand on this project as follows.

➢ For all applications I would add Google Maps GPS functionality to allow users view

where a venue is and get directions to that venue.

➢ For the live score’s web application, I would like to authenticate users allowing them

to have a profile where they can set their favourite teams, counties, clubs or sport

that they want to follow and filter the results they see to match their favourites. I

would add a listener to the team sheets so that the team sheets would update live

when a change is made or a substitution. I would include further information for each

game showing information for the substitutions and cards given by the referee.

➢ For the Game management I would have functionality for the secretary or referee of

a game to be able to download a PDF file for the match report or be able to email the

match report.

➢ I would add a public/private view setting to team sheets so that the team official could

set the team sheet to private until the game has started. This would be important to

the team official as in general they don’t want their team to be known prior to a game.

➢ For the android wear application, I would like to improve the appearance of layouts,

add notifications to notify the referee if they have been scheduled for a game and

add alarms to a game to notify the referee when time is up.

➢ Future additions to the project could include a full GAA Management web application

that could be used for everything GAA related all in the once place for example

registration, fundraising, statistics, recording of courses, garda vetting, covid tracking

etc.

Along the way I used many skills that I learned during the Hdip in Computer Science

including web development, android development, ICT, Database Design, Programming with

JavaScript, Kotlin, HTML and CSS, Git and GitHub as well as expanding on that learning

with new topics such as Android Wear, Firebase Cloud Functions and Firestore and Hosting,

Svelte Framework and re-learning the frontend Bootstrap Framework.

Overall, I am delighted with what I have achieved, back in January when I was looking at

android wear, I didn’t know how or where I was going to start with the project but with a lot of

research, I got there slowly but surely. I also made many mistakes along the way and

wasted a lot of time on some of those mistakes which made me realise that taking the time

to prepare and make decisions at the outset of a project is vital, my eyes were also opened

to how important it is to spend time designing your database as it can have huge effects on

the performance of a project and the amount of code that may be needed. I am especially

delighted with all the new things that I have learnt along.

57

References
Android Broadcast. (n.d.). Retrieved from Android Developer:

https://developer.android.com/guide/components/broadcasts

Android Services. (n.d.). Retrieved from Android Developer:

https://developer.android.com/guide/components/services

Android Studio. (n.d.). Retrieved from Android Developers: https://developer.android.com/studio

Android Wear. (n.d.). Retrieved from Android Developer: https://developer.android.com/wear

Android Wear Authentication. (n.d.). Retrieved from Android Developer:

https://developer.android.com/training/wearables/overlays/auth-wear#Google-Sign-in

Annotations. (n.d.). Retrieved from Android Developer:

https://developer.android.com/reference/java/lang/annotation/Annotation.html

Balsamiq Cloud. (n.d.). Retrieved from Balsamiq Cloud: https://balsamiq.cloud/

Bootstrap. (n.d.). Retrieved from Bootstrap: https://getbootstrap.com/

CSS: Cascading Style Sheets. (n.d.). Retrieved from MDN Web Docs:

https://developer.mozilla.org/en-US/docs/Web/CSS

Draw. (n.d.). Retrieved from Draw: https://draw.io

Firebase Authentication. (n.d.). Retrieved from Firebase: https://firebase.google.com/docs/auth/

Firebase Cloud Functions. (n.d.). Retrieved from Firebase:

https://firebase.google.com/docs/functions

Firebase Firestore. (n.d.). Retrieved from Firebase: https://firebase.google.com/docs/firestore

Firebase Firestore functions working slow or returning too quick. (n.d.). Retrieved from

Stackoverflow: https://stackoverflow.com/questions/67472446/firestore-firebase-functions-

working-slow-or-returning-too-quick

Firebase Hosting. (n.d.). Retrieved from Firebase: https://firebase.google.com/docs/hosting

Firebase Pricing. (n.d.). Retrieved from Firebase: https://firebase.google.com/pricing/

Firebase Realtime Database. (n.d.). Retrieved from Firebase:

https://firebase.google.com/docs/database

Firestore Pricing. (n.d.). Retrieved from Firebase: https://cloud.google.com/firestore/pricing

HTML: HyperText Markup Language. (n.d.). Retrieved from MDN Web Docs:

https://developer.mozilla.org/en-US/docs/Web/HTML

JavaScript. (n.d.). Retrieved from MDN Web Docs: https://developer.mozilla.org/en-

US/docs/Web/JavaScript

58

Kotlin. (n.d.). Retrieved from Kotlinlang: https://kotlinlang.org/

kotlin android training live data. (n.d.). Retrieved from Android Developer:

https://developer.android.com/codelabs/kotlin-android-training-live-data#0

MongoDB. (n.d.). Retrieved from MongoDB: https://www.mongodb.com/cloud/atlas

MongoDB Pricing. (n.d.). Retrieved from MongoDB: https://www.mongodb.com/pricing

Monosnap. (n.d.). Retrieved from Monosnap: https://monosnap.com/

Paint. (n.d.).

Referee Handbook. (n.d.). Retrieved from GAA:

https://www.gaa.ie/api/pdfs/image/upload/ogd9kegh1slxnvvuwmll.pdf

Start Integrating. (n.d.). Retrieved from Android Developers:

(https://developers.google.com/identity/sign-in/android/start-integrating

Svelte. (n.d.). Retrieved from Svelte: https://svelte.dev/

Svelte Local Storage Store. (n.d.). Retrieved from npmjs: https://www.npmjs.com/package/svelte-

local-storage-store

Svelte Tutorials. (n.d.). Retrieved from Svelte: https://svelte.dev/tutorial/basics

Trello. (n.d.). Retrieved from Trello: https://trello.com/

User Input/Voice. (n.d.). Retrieved from Android Developers:

https://developer.android.com/training/wearables/user-input/voice

Visual Studio Code. (n.d.). Retrieved from Visual Studio: https://code.visualstudio.com/

Wear Drawers. (n.d.). Retrieved from Android Developer: https://github.com/android/wear-os-

samples/tree/main/WearDrawers

Writable Stores. (n.d.). Retrieved from Svelte: https://svelte.dev/tutorial/writable-stores

Write Less Code. (n.d.). Retrieved from Svelte: https://svelte.dev/blog/write-less-code

59

Appendices

Appendix A – GitHub Repository for the referee android wear watch

Appendix B – Firebase Firestore database setup

